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The earliest results concerning the turbulence structure in a turbulent boundary 
layer with very unstable thermal stratification are due to Prandtl (1932). These 
results were developed further and made more precise by Obukhov (1946, 1960), 
Monin & Obukhov (1954) and Priestley (1954, 1955, 1956, 1960). All of these authors 
dealt with a surface layer of the Earth’s atmosphere on hot summer days. Such a 
layer is the most easily accessible example of an unstably stratified boundary layer 
and it will be the main concern in this paper too. The theoretical predictions by the 
above-mentioned authors seemed a t  first to be confirmed by the available 
experimental data but in the late 1960s it became clear that at least some of the 
predictions disagreed strongly with the experimental information. 

A more elaborate theory was proposed by Betchov & Yaglom (1971) who used a 
suggestion of Zilitinkevich (1971). According to this theory, within an unstably 
stratified boundary layer there are three special sublayers where turbulence structure 
is self-preserving and obeys rather simple power laws. The new theory explained the 
disagreement between some of the deductions from the old theory and the data. 
However, the data available in 1971 were insufficient for the confirmation of the new 
theory and it was even supposed by Betchov & Yaglom (1971) that their theory 
could not be applied to atmospheric surface layers on hot summer days. 

Much new experimental data concerning unstably stratified boundary layers has 
been obtained in recent years ; in particular, extensive experimental information was 
collected during the summers of 1981-1987 a t  the Tsimlyansk Field Station of the 
Moscow Institute of Atmospheric Physics. This paper is a survey of the deductions 
from the theory by Betchov & Yaglom which concern the mean fields and the one- 
point fluctuation moments in unstably stratified boundary layers, and a comparison 
of these deductions with the data available in 1989. It is shown that the data agree 
more or less satisfactorily with the theoretical predictions and permit one to obtain 
estimates for a number of coefficients that  enter the theoretical equations. 

1. Introduction 
It is known that the nonlinearity of the equations of fluid mechanics makes the 

dynamic equations for both the mean fields and any fluctuation moments of 
turbulent flows non-closed, i.e. the number of unknowns in the equations always 
exceeds the number of available equations. Therefore these equations cannot be 
solved and in practice they are usually replaced by some model equations obtained 
by supplementing the rigorous dynamic equations by some speculative closure 
hypotheses. Such model equations are, of course, not strict and the estimation of 
their accuracy and the selection of the best closure hypotheses is a very difficult task. 
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Therefore, results pertaining to turbulent flow that can be obtained without any use 
of dynamic equations and closure hypotheses are of a special interest. 

The most important general method for obtaining meaningful physical results 
without solving the dynamic equations is based on similarity and dimensional 
arguments. These arguments have often been fruitfully applied to the mechanics of 
turbulence ; typical examples are Kolmogorov and Obukhov’s theory of locally 
isotropic turbulence (see e.g. Batchelor 1953 or Monin & Yaglom 1975, Chap. 8), 
similarity theory of turbulence in thermally stratified boundary layers due to Monin 
& Obukhov (1954), and similarity laws of turbulent diffusion studied by Batchelor 
(1950, 1952, 1964). This paper presents some new developments of the Monin & 
Obukhov ( 1954) theory based on refined dimensional considerations. 

We shall consider two-dimensional turbulent boundary layers in fluid of variable 
density flowing over a horizontal flat wall a t  z = 0 in the Ox-direction and having an 
unstable density stratification, i.e. the mean density p = p(z) increasing with z .  The 
atmospheric surface layer above flat homogeneous ground on a summer day, when 
the ground is heated by the sun and the air temperature is decreasing with height, 
is such a boundary layer. An unstable boundary layer can also be produced in the 
laboratory by fluid of lower temperature flowing over a heated plate. In  both cases 
the density profile p(z) is specified by the mean temperature profile T(z) ; therefore 
it will be convenient to consider below the mean fluid temperature T = T(z)  instead 
of the mean density p(z). 

Unstable turbulent boundary layers have been studied mostly by meteorologists 
dealing with atmospheric surface layers. Apparently the first theoretical study of 
such a layer is due to Prandtl (1932). He used a semiempirical mixing-length theory 
and came to  the conclusion that 

in very unstable stratification, where K ,  = KT(z )  is the eddy temperature diffusivity 
and W ,  is the typical scale of the vertical velocity fluctuations. To determine the 
wind velocity profile U ( z ) ,  Prandtl assumed that eddy viscosity K ,  is proportional to 
K ,  (i.e. K ,  = aK,, where a is a constant). Then by virtue of the second of equations 

dU 4 K,(z) ocb, - a 2-3. 
dz 

Prandtl’s paper was much ahead of its time and in 1932 it did not attract much 
attention. The next important study of a thermally stratified atmospheric surface 
layer is due to Obukhov (1946). (This paper was finished in 1943, but its publication 
was delayed by World War 11; see Businger & Yaglom 1971.) Obukhov also used the 
mixing-length theory but purely dimensional arguments played an important part in 
his reasoning. He studied the atmospheric surface layer (ASL), i.e. the lowest air 
layer where the Earth’s rotation and the total thickness z ,  of the planetary boundary 
layer hardly affect the flow. Within the ASL the turbulent fluxes of momentum and 
temperature r = p(-uw) and Q = (wt) (where t ,  u and w are the fluctuations 
of temperature and velocity components in the Ox- and Oz-directions and angular 
brackets symbolize averaging) can be considered as independent of z .  (The 
thickness z,.of the ASL is usually determined in the middle latitudes from two 
conditions: z 5 50 m and z 5 0 . 1 ~ ~  within the ASL.) Obukhov clearly understood 
that the turbulence structure of the ASL is fully determined by the values of the 
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momentum flux r (or, equivalently, the friction velocity u* = ( - u w ) ~ ) ,  the 
temperature flux Q and a buoyancy parameter p = gy, where g is the acceleration due 
to  gravity and y is the coefficient of thermal expansion (which is equal to 11% for an 
ideal gas, T,  being the mean absolute temperature of the surface layer). In  this 
relation he introduced the important lengthscale L = u”,Q/? and showed that 
buoyancy forces are unimportant for z -g L.  Moreover, he also assumed that K,(z) = 
aK,(z), a = constant, and deduced from this assumption that K,(z) cc K,(z) cc z: for 
z % L (i.e. for strong instability). The latter relations clearly imply equations ( 1 . 1 )  
and (1.2) for dT/dz and dU/dz. Note that Obukhov included the numerical factor 
- 1 / K ,  where K x 0.4 is the von KQrman constant, in the definition of the lengthscale, 
i.e. he used Lo = -u:/d&? instead of L.  The length Lo is usually called the Obukhov 
or the Monin-Obukhov length and i t  is used in many papers and books dealing with 
boundary-layer meteorology. However, the length L,  which is positive in unstable 
stratification and does not include the empirical value of K ,  seems to  be more 
convenient and it is used instead of Lo in this paper. 

Some vertical profiles of dimensionless turbulence parameters in the ASL were 
represented by Obukhov (1946) as functions of the dimensionless height go = z/Lo 
(easily replaceable by 6 = z/L = - c o / K ) .  He derived such representations from some 
model (semiempirical) equations of turbulence mechanics. However, later, Monin & 
Obukhov (1954) used neither dynamic equations nor semiempirical hypotheses but 
based all their conclusions only on general similarity and dimensional arguments. 
They considered the flow region not too close to  the ground where the molecular 
transfers and ground roughness do not affect directly the turbulence structure and 
gave the following general equations for the wind velocity and temperature 
gradients : 

where T* = Q/u,, and $,(c), c $ ~ ( C )  are universal functions of 5 = z/L. If z < L ,  then 
we can assume that L = u;/Qp = co, i.e. = 0. Therefore dU/dz and dT/dz must be 
independent of p for z < L. Thus, 

$ V ( c )  $V(’) = $ T ( C )  @ T ( O )  = A T  for 5 * l ,  (1.4) 

where A ,  and A ,  are constants. (It is easy to see that A ,  = 1 / K ,  A ,  = A , & ,  
where K x 0.4 is the von KQrman constant and pt x 0.85 is the turbulent Prandtl 
number within the logarithmic sublayer of a turbulent boundary layer; see e.g. 
Yaglom 1979, or Kader & Yaglom 1980.) Moreover, if z % L ,  then dT/dz and 
KT = -Q/[dT/dz] must be independent of u,, (since passage to the limit L -to is 
equivalent to u,, + O ) .  Therefore @T(lJ = - B T @ ,  where B ,  = const., for 5 B 1 and, 
in accordance with ( 1 .  l),  

In addition, Monin & Obukhov suggested (as did Prandtl 1932 and Obukhov 1946) 
that  KT(z) = aK,(z), K,dU/dz = u:, where a = const. and u* = const.; this 
suggestion implies that 

_-  - ~ , ~ : ( ~ p ) - e ~ : ,  B ,  = const. for z p L 

(i.e. that  (1.2) is valid). 
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For one-point moments of velocity component and temperature fluctuations u, v, 
w and t ,  the dimensional analysis gives equations similar to (1.3). In particular, 

a% = (?A">" = u* $l(z /L) ,  a, = (?I">" = u* $&/L), u, = (w">" = u* ' ( z / L ) }  (1.7) 
at = (t2)' = T* $4(z/L)2 <ut) = -&$5(z/L), 

where i = 1, . . . , 5 ,  are universal functions of 5 = z/L.  The moments (1.7) must be 
independent of ,!3 for z 4 L ;  therefore all functions $((c) must be constant for 6 < 1. 
On the other hand it is natural to assume that the moments (1.7) must be 
independent of u* for z $ L .  This assumption implies that 

$1 @> $2 & $3 - & $4 - 
for 5 % 1 so that 

uu = C,(Qpz);, 

gt = C4 Q $ ( ~ Z ) - $ ,  (ut) = - C5 Q 

at z 9 L,  where C , ,  . . . , C, are universal constants. 

U, = C,(Qpz)i, 

Equations (1.9) for au, uv, a, and at were given by Obukhov (1960) who assumed 
in addition that C, = C2 ; the equation for aw is clearly related to Prandtl's equation 
(1  . l )  for W,. Equation (1.9) for at was also obtained by Priestley (1960) and in fact 
it follows from the results of Priestley (1954, 1955, 1956) which were mainly devoted 
to a discussion and comparison with the data of equation (1.5) for dT/dz. 

The early Australian and USSR measurements of wind velocity and temperature 
profiles in an unstable ASL convey the impression that (1.5) and (1.6) agree well with 
the data for a height range beginning a t  an unexpectedly small value of z, on the 
order of 0.1~5; see e.g. Priestley (1959) and Monin & Yaglom (1971, $8). (The 
subsequent data show that in fact (1.6) begins to be valid at slightly larger values of 
z than (1.5) but this is of minor importance.) The measurement of the second-order 
moments of turbulent fluctuations is more complicated than that of the mean fields ; 
nevertheless, measurements of at and aw were quite often taken in the ASL during 
the 1960s. The results obtained show that the equations (1.9) for ut and uw agree 
well with the data over a wide range of z-values larger than 0.1L. Note also that 
measurement of uu and a, in the ASL presents great difficulties and till now the 
results have been rather unreliable, while measurements of the moment (ut) first 
appeared only in the late 1960s. Therefore in the middle of the 1960s it was believed 
that the simple results (1.5), (1.6) and (1.9) were confirmed by the data for z 2 0.1L. 

In fact, however, the situation was not so clear then. First of all it was a little 
strange that the asymptotic equations for < %  1 proved to be valid at very 
small values of 5, of the order of 0.1. (Note that in all the literature the variable 
c0 = z/Lo = - KC was used instead of y; therefore it was believed that the asymptotic 
equations for lo < - 1 proved to be valid at 1;, % -0.04.) Moreover, the derivation 
of (1.5), (1.6) and (1.9) could not be considered as fully satisfactory, since the 
derivation of (1 5 )  and (1.9) was based on the assumption that u* does not affect the 
turbulence structure at z B- L,  even though (1.6) includes u*. Also, i t  became clear in 
the second half of the 1960s that a t  greater values of 5, on the order of a few units, 
the agreement of the results (1.5) and (1.6) with the experimental data becomes 
rather poor (see e.g. Monin & Yaglom 1971, p. 499, and Businger et al. 1971). Finally, 
the first measurements of the vertical profiles of the moments (ut) and (uwt) in the 
unstable surface layer performed in the late 1960s gave results (described by Monin 
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& Yaglom 1971, pp. 522-523, and Wyngaard, Cot6 & Izumi 1971) that strongly 
disagreed with the last of equations (1.9) and the related result for (uwt )  implied by 
the assumption that this moment is independent of u* for z 2 L. 

The inconsistency of the derivation of (1.5) and (1.6) by Prandtl, Obukhov and 
Monin lends interest to Bernstein’s (1966) attempt to apply the so-called ‘directional 
dimensional analysis’ to the study of the mean velocity, temperature and 
humidity profiles in the ASL. (This generalized form of dimensional analysis will 
be discussed in $2 of this paper.) In fact, Calder (1967) showed that directional 
analysis automatically leads to equations (1 5)  and (1.6). However, Calder also 
showed that this analysis does not give correct results for neutral stratification and 
therefore he concluded that the analysis is incorrect. (Bernstein agreed with this 
conclusion in his reply to Calder’s comments.) Nevertheless later Zilitinkevich (1971) 
tried again to apply directional dimensional analysis to the study of an unstable 
ASL. He showed that the analysis not only implies (1.5) and (1.6) but also leads to 
some other plausible results, e.g. to an equation for ( u t )  which, for 6 2 0.1, agrees 
satisfactorily with the available data. In their comments on Zilitinkevich’s paper 
Betchov & Yaglorn (1971) reanalysed the Zilitinkevich assumptions and developed 
a three-sublayer model of unstably stratified turbulent boundary layers. According 
to Betchov 6 Yaglom’s arguments, (1.5), (1.6) and the related equations for (ut) and 
(uwt )  implied by directional analysis are valid only in a restricted range of moderate 
values of 5, while for very large values of 5 different equations hold true. This 
prediction agrees qualitatively with the observed deviations of the wind velocity and 
temperature profiles from the laws (1.5) and (1.6) at 5 x 2. However, in 1971 
micrometeorological data were available only for 5 5 5 and therefore they were 
clearly insufficient for reliable verification of the predictions by Betchov & Yaglom, 
and there was doubt about the applicability of their predictions to the ASL. 

Many additional measurements of turbulence structure for unstable stratified 
boundary layers were carried out in subsequent years both in the atmosphere and 
laboratory flows. In particular, extensive data for a wide range of positive values of 
6 were collected from the atmospheric experiments performed at  the Tsimlyansk 
Field Station of the Moscow Institute of Atmospheric Physics during the summers 
of 1981-1987. The new data agree quite satisfactorily with the three-sublayer model 
of 1971 and permit one to determine the ranges for the three sublayers and to 
estimate many empirical coefficients entering the theoretical equations. This paper 
is a survey of theoretical results and experimental data concerning the mean fields 
and fluctuation moments in unstably stratified ASL and laboratory turbulent 
boundary layers (parts of which are briefly described by Kader & Yaglom 1984, 
Kader 1988 and Kader & Perepelkin 1989). Note that only convective boundary 
layers with shear will be considered in the paper ; the case of shear-free convective 
boundary layers studied, for example, by Hunt (1984) is rather different and will not 
be touched on below. (However, the comparison of the atmospheric data with the 
vertical profiles of horizontally averaged quantities in fully turbulent laboratory 
convection seems to be rather interesting.) 

The three-sublayer model can also be applied to multipoint statistical parameters, 
for example to spectra and correlation functions of turbulent fluctuations. Some 
deductions from the model concerning the longitudinal (along the mean wind 
direction) spatial spectra and correlation functions of turbulence within the unstable 
ASL were given by Kader (1987, 1988), Kader & Yaglom (1984, 1987) and Kader, 
Yaglom & Zubkovskii (1989), but this material is beyond the scope of this paper. 



642 B. A .  Kader and A . M .  Yaglom 

2. Directional dimensional analysis and the three-sublayer model for an 
unstable boundary Iayer 

Theoretical study of the ASL profiles of meteorological quantities by Bernstein 
(1966), Zilitinkevich (1971, 1973) and Betchov & Yaglom (1971) is based on the 
application of the so-called ‘directional ’ (or ‘anisotropic ’, or ‘vector ’) dimensional 
analysis to the problem under consideration. This form of dimensional analysis was 
first developed in the nineteenth century and, although it is often applied to  specific 
physical problems, it continues to be controversial and to raise many doubts. The 
analysis uses different dimensions for lengths in different (orthogonal) directions, for 
example dimensions L, and L, for horizontal and vertical lengths or three dimensions 
L,, L,, L, for lengths in three mutually perpendicular directions. The increase in the 
number of basic dimensions clearly decreases the number of dimensionless 
combinations of relevant physical parameters ; therefore, it permits one to obtain 
sharper results than those implied by the conventional dimensional analysis. This 
makes directional dimensional analysis very attractive but the conditions that 
guarantee the correctness of its deductions are far from obvious. 

Williams (1892) was apparently the first who proposed to  apply dimensional 
analysis with several length dimensions to  physical problems. Later such an analysis 
was used (or, a t  least, mentioned) in many papers and a number of books (e.g. by 
Huntley 1952 ; Isaacson & Isaacson 1975 ; Barenblatt 1980 ; Panton 1984 and Kline 
1986). Williams, Huntley and Kline did not discuss a t  all the conditions for the 
applicability of such an analysis but gave only some specific examples where it led 
to correct results. It is, however, easy to find other examples where its consequences 
are clearly incorrect. (This is precisely the reason why Calder 1967 rejected 
Bernstein’s arguments of 1966.) Barenblatt (1980, 3 7.2) presented an example where 
the applicability of directional analysis follows from the invariance of dynamic 
equations with respect to some subgroup of affine transformations, but he did not 
discuss the problem in detail. Panton (1984, $8.8) noted that the use of several length 
dimensions works when the physical processes for different directions are independent 
of each other; however, in his opinion such extra information can also always be used 
in a more direct manner. Isaacson & Isaacson (1975) assert that  the use of different 
length dimensions for different directions must be based on ‘orthogonal in- 
dependence ’ of relevant physical processes but they do not give a strict definition of 
the term used. A more detailed discussion of the problem was given by Betchov & 
Yaglom (1971) and Massey (1978) whose conclusions coincide only partially. 

In  both the above-mentioned papers it is noted that the increase of the number 
of ‘basic dimensions’ by one would not change the conclusions of the dimensional 
analysis, provided one more special physical parameter is added to the list of 
parameters relevant to  the problem. The new parameter must be chosen so that its 
dimension coincides with the ratio of the new ‘basic dimension ’ to the ‘ conventional 
dimension ’ of the corresponding physical parameter. Specifically, Betchov & Yaglom 
(1971) considered the case where the sole length dimension L,  is replaced by two 
dimensions L, and L, of the horizontal and vertical lengths, and stated that then no 
incorrect conclusions will be obtained, provided a new parameter of dimension LJL, 
(or, equivalently, (LJL,)”) is added to the list of relevant physical parameters. 
Similarly, Massey (1978) explained that the transition from the three basic 
dimensions M,,  L, and Tl of mass, length and time to four basic dimensions MI, L,, 
T, and F,, where Fl is the dimension of force, would not change all the dimensional 
equations, provided a new relevant physical parameter of dimension FJM,  L,  T;2 is 
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additionally taken into account. However, Betchov & Yaglom considered the 
parameter of dimension (L,/L,)* as a physical quantity characterizing the rate of 
energy exchange between horizontal and vertical motions, while Massey introduced 
the parameter of dimension Fl/Ml L, Ty2 purely formally. Betchov & Yaglom's 
approach implies the conclusion that the ' additional relevant parameter ' vanishes 
(i.e. it must not be taken into account), if horizontal and vertical motions are 
energetically uncoupled (i.e. there is no energy exchange between them). Therefore in 
this case directional analysis can be used without modifying the list of relevant 
parameters (this conclusion was also stated by Zilitinkevich 1971). On the other hand 
Massey suggested that two independent length dimensions L, and L, can be used 
only in cases where there is no force acting in either the x- or z-direction (i.e. there 
is no energy influx or outflux in one of the directions) ; therefore he concluded that 
directional dimensional analysis cannot be applied to a turbulent flow (the same 
statement was formulated by Calder 1967). Massey's condition is, of course, a 
particular case of that of Betchov & Yaglom. It seems, however, to  be clear that  just 
the energy exchange among processes in different directions and not the presence of 
forces acting in these directions makes directional analysis incorrect without 
extension of the list of relevant parameters. Therefore we shall base our consideration 
in this paper on Betchov & Yaglom's condition. It will be demonstrated below that 
this condition, when applied to turbulence in an unstable boundary layer, implies 
quite plausible results which do not contradict the available data. 

Let us consider first a turbulent boundary layer in neutral (or almost neutral) 
thermal stratification. Assume that the distance z from the wall is large in 
comparison with the molecular transfer and roughness lengths v/u*,  D / u ,  and h, 
(where v and D are molecular viscosity and temperature diffusivity and h, is the mean 
height of the wall roughness elements) but is small in comparison with the boundary- 
layer or ASL thickness. (Below, this condition will be always assumed to be true.) 
Then, as is well known, 

where K x 0.4, P, x 0.85 (see (1.3) and (1.4)). Let us apply directional dimensional 
analysis with different dimensions L, and L, of horizontal and vertical lengths to  
equations (2.1). Then obviously [q = L,T;l, [u*] = LiLkT;' (where the square 
brackets denote dimension and T, is the time dimension). Hence directional analysis 
implies that K is not a dimensionless constant but is a physical quantity of dimension 
Lg Lip. According to the experimental data K x 0.4 if (and only if) the horizontal and 
vertical lengths are measured by the same units. 

Consider now the budgets of the kinetic energy components in high-Reynolds- 
number turbulence. For a steady two-dimensional stratified boundary layer they 
have the form 

I dz 
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where p is the pressure fluctuation and e,, e, and E ,  are the rates of viscous 
dissipation for +(u2), i(v2) and $(w2); see e.g. Monin & Yaglom (1971, $6). Here 
(-uw) dU/dz is the rate of dynamic production of the energy of longitudinal 
velocity fluctuations (which borrow energy from that of the mean motion) and 
Qp = (wt) p is the rate of thermal production of the energy of vertical fluctuations 
by buoyancy forces, the terms on the right-hand sides of (2.2) describe the viscous 
dissipation and the vertical transfer of energy components, while the terms 
containing p on the left-hand sides determine the rates of energy exchange among the 
components. 

According to (2.1) (-uw)dU/dz x u:/Kz if the thermal stratification is close to 
neutral. Obukhov (1946) assumed that buoyancy forces play no role if the rate of 
energy production by these forces is smaller than that of dynamic energy production, 
i.e. if z < -Lo, where Lo = -u:/Kp&. However, in the framework of directional 
dimensional analysis this conclusion should be modified. According to such an 
analysis the rates of energy production u:/Kz and QP have different dimensions, 
Li  c3 and LE q3; therefore their ratio -Lo/z is not a dimensionless quantity but 
has the dimension Li  Liz. The buoyancy forces do not affect the turbulence structure 
only if the rate of the influx of energy to the vertical velocity component from the 
longitudinal one due to the action of the pressure fluctuations is greater than the rate 
of direct production of t(w2) by buoyancy forces. Moreover, the rate of the dynamic 
energy influx to  the vertical velocity fluctuations must be of the order of the unique 
combination ofu,, z and K having the same dimension L,2 Ty3 as Qp, i.e. this rate must 
be of the order of ( K U , ) ~ / Z .  These arguments make us think that the dynamic sublayer 
of an unstably stratified boundary layer (i.e. the sublayer where the buoyancy forces 
play no part) is determined by the condition z < L,, where L ,  = (KU*)’/&~ is a 
vertical lengthscale which is approximately 40 times smaller than the original 
Obukhov length I Lo I = u:/KpQ and 15 times smaller than L = u”,Q/3 (since K - ~  x 40, 
K - ~  x 15). This estimate of the dynamic sublayer thickness was proposed by Betchov 
& Yaglom (1971); i t  agrees rather we11 with the observations. 

For z > L ,  inclusion of the thermal production becomes essential and therefore the 
parameter p must be taken into account. If z only slightly exceeds L,, then the 
buoyancy forces affect the w-component but the u- and, probably, also v-fluctuations 
are produced dynamically and part of the energy of the u-fluctuations borrowed from 
the mean motion is transferred to  the w-fluctuations by means of pressure 
fluctuations. Moreover, a range of z-values exists somewhere above the level z = L,  
where the energy influx to the w-fluctuations from the energy of the mean motion by 
the action of the pressure fluctuations becomes negligibly small as compared to the 
thermal production of the vertical energy, but the horizontal velocity fluctuations 
have, nevertheless, a purely dynamic origin. Within this range the values of z/L,  
must be greater than one, but not too large, and for such z-values the rate of the 
interconversion of the energies of the vertical and horizontal fluctuations is very 
small compared with both the rates of energy production ( -uw) dU/dz and Qp. It 
is natural to think that in the corresponding flow region this interconversion can be 
neglected to a first approximation, and the vertical and horizontal motions can be 
considered to be energetically uncoupled. Therefore the directional analysis (with 
two length dimensions L, and L,) can be applied here without any extension of the 
list of relevant parameters. The region of an unstable boundary layer considered will 
be called below the dynamic-convective sublayer. 

AtJ still greater heights the rate of convective energy production exceeds the rate 
of dynamic energy production and the energy transfer from the vertical to horizontal 
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velocity fluctuations becomes significant. In the lower part of this region both the 
dynamic and convective production of the energy of horizontal fluctuations must be 
taken into account. However, the mean velocity gradient dU/dz decreases with z 
and, beginning from some value of z, the dynamic energy production (-uw) dU/dz 
becomes so small that it  can be neglected. Above this level u* = ( - u w ) i  can be 
excluded from the list of relevant physical parameters. The corresponding flow region 
will be called the free convection sublayer. In this sublayer we can use either 
conventional dimensional analysis with one length dimension or directional analysis 
with two length dimensions L, and L, under the condition that the list of relevant 
physical parameters is supplemented by a parameter of dimension of the form 
(LJL,)". The upper edge of the free convection sublayer in laboratory flows coincides 
with the value of z where the influence of the boundary-layer thickness becomes 
significant and in the atmosphere it coincides with the upper boundary of the ASL. 

The three-sublayer model of an unstable turbulent boundary layer assumes that 
such a boundary layer has three quite distinct sublayers (dynamic, dynamic- 
convective and free convective) where some specific simple laws must be valid. 
The model was proposed by Betchov & Yaglom (1971) when there were no data to 
compare the model with. Note that Betchov & Yaglom (1971), Yaglom (1974) and 
Monin & Yaglom (1975, pp. 853-854), assumed that the free convection sublayer 
probably usually does not exist in the Earth's atmosphere since its lower edge is 
above the upper edge of the ASL ; a similar point was also made by Wyngaard et al. 
(1971, p. 1172). However a t  present much data exists from atmospheric observations 
which agree quite satisfactorily with the three-sublayer model ; there are also some 
laboratory data that confirm the existence of the dynamic-convective sublayer. A 
more direct verification of the conditions implying the existence of this sublayer 
could also in principle be established by measurements (or determination with direct 
numerical simulation or the LES method) of the moments (pau /ax ) ,  (pawlay) and 
(pawlaz )  describing the rates of energy exchanges among the velocity components. 
Let us hope that such a verification will become possible in the near future. 

3. Mean velocity and temperature profiles in unstable boundary layers 
In  the dynamic sublayer where buoyancy effects can be neglected the well-known 

logarithmic formulae for U(z)  and T(z) are valid. In  the case of a rough wall the 
formulae have the form 

where T, is the wall temperature and zu and zT are roughness parameters for the 
velocity and temperature. (Note that both experimental data and model theoretical 
estimates show that zT is much smaller than z u ;  see e.g. Yaglom 1974, 1979 and 
Kader & Yaglom 1980.) 

At heights z of the order of L, the profiles U(z)  and Tfz) begin to deviate from the 
logarithmic shapes, and a t  greater heights the dynamic-convective sublayer is 
established where the horizontal and vertical velocity fluctuations are energetically 
uncoupled. In this sublayer, directional dimensional analysis with different 
dimensions L, and L, of horizontal and vertical lengths can be applied to the study 
of the turbulent regime. Therefore the velocity scale u* of dimension LiL: TT1 is 
inconvenient here and i t  must be replaced by two scales: a vertical velocity scale 
w* = (&/3z)i (of dimension L,T;l) and a horizontal velocity scale u** = u",w* = 
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ui(Qpz)-i (of dimension L x q l ) .  The temperature scale T* = Q / y ,  is also in- 
convenient here and it must be replaced by @, = Qlw, = Q’(pz)-X (of the same 
dimension 0, as the temperature). Since in the framework of the directional analysis 
no combination of Q, p and u* has the same dimension as the vertical coordinate z ,  
the mean velocity and temperature profiles in the dynamic-convective sublayer 
must be self-preserving and described by the equations 

where B,  and B,  are dimensionless constants. Note that (3.2a) have the form 
proposed by Prandtl (1932) and Obukhov (1946) who assumed, however, that these 
equations relate to the limiting case of very strong instability (cf. (1.5) and (1.6)). 

The upper edge of the dynamic-convective sublayer is a t  height z1 of the order of 
L. Beyond this sublayer the profiles U(z)  and T(z)  begin to deviate from the shapes 
given by ( 3 . 2 ~ ) .  At even greater heights the free convection sublayer is established 
where the value of the friction velocity does not affect the statistical regime. Here 
w,, = (Qpz); is the only relevant velocity scale and 0, = Q/w* is the relevant 
temperature scale ; hence in the free convection sublayer 

where C, and C, are two new constants. Equations ( 3 . 2 ~ )  and ( 3 . 3 ~ )  for dT/dz are 
of the same form but the coefficients B,  and C, can differ from each other. According 
to (1.3) 

#do = BuC-4 = BTC? (3.2b) 

in the dynamic-convective sublayer and 

(3.3b) 

in the free convection sublayer. 
In  the framework of the directional analysis the coefficient C, is not a 

dimensionless constant but a parameter of dimension L,/L,. By adding C, (or, 
equivalently, the quantity K~ = C;f of dimension (L,/L,)a) to the list of relevant 
parameters we can apply directional analysis to the study of turbulence in the flow 
region above the dynamic-convective sublayer. Then we can introduce one more 
vertical length, L,, = ui//c”; Qp = ( K ~  u*)”QP; the lower edge of the free convection 
sublayer could be expected to be at heights of the order of L**. 

Let us now consider the comparison of equations (3.1) (or, equivalently, (1.3) and 
(1.4)), ( 3 . 2 ~ )  and ( 3 . 3 ~ )  with the available experimental data. The formulae (3.1) and 
(1.3)-( 1.4) relate to unstratified boundary layers ; they are confirmed by extensive 
laboratory and atmospheric data. All the data show that K x 0.4 (see, for example, 
recent meteorological papers by Hogstrom 1985, Telford et al. 1986 and Zhang, 
Oncley & Businger 1988). Reliable measurements of Pt have only been performed in 
laboratories; they show that pt x 0.85 and this estimate does not contradict t h e  
available atmospheric data (see, for example, Yaglom 1974, 1979 and Kader & 
Y aglom 1980). 

It was discovered in the late 1960s and early 1970s that  equations ( 3 . 2 ~ )  agree 
satisfactorily with wind velocity and temperature observations in unstable surface 
layers a t  heights in the range from approximately z = 0.041LoI = 0.1~5 to  z = lLol = 
2.5L, but a t  greater heights the experimental values of #J<) deviate upward from 
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the curve f i U  = B, ?$ and the experimental values of #JT({) deviate downward from 
$, = I3,fl-i (see e.g. Monin & Yaglom 1971 and Businger et al. 1971). Because of the 
indicated deviation of the experimental data from equation (3.2a), the dimensionless 
temperature and velocity profiles in unstable thermal stratification have often been 
described by the following empirical equations : 

$ U ( O  = AU(1 -Yu6)’, = A d 1  -Y,C)-i, (3.4) 
where Au,  A,, yu ,  y, are four dimensionless coefficients (see e.g. Dyer 1967 ; Businger 
et al. 1971; Francey & Garratt 1981; Dyer & Bradley 1982 and Hogstrom 1988). 
According to these equations q4, cc @ and q4T of 6-i for 6 9 1. However, the values 
of coefficients A,,  A ,  and, especially, yu,  y, that  were used by various authors differ 
substantially and in fact all the suggested equations of the form (3.4) were based 
mostly on data relating only to z < 2.51~5~1 x 6L. Therefore the results of the cited 
papers are insufficient for reasonably reliable determination of the asymptotic 
behaviour of profiles for very large values of 6 = z/L. 

The search for more complete data covering a wider range of c-values was an 
important reason to arrange detailed micrometeorological measurements a t  the 
Tsimlyansk Field Station of the Moscow Institute of Atmospheric Physics. The 
measurement site is a flat and rather homogeneous area in southern Russia where 
in the summers of 1981-1987 extensive data were collected. The data included many 
mean wind and temperature profiles determined by cup anemometers and resistance 
thermometers placed a t  1,2,4,8,16,24,32 and 40 m on a 40 m mast. Simultaneously 
with the profile measurements, eddy correlation measurements of u* = ( - uw); and 
Q = (wt) were performed with the aid of a three-component sonic anemometer and 
a fast-response platinum resistance thermometer placed close to each other a t  one 
height (which often varied) within the surface layer. The measurement technique and 
the data treatment methods are described in detail by Kader & Perepelkin (1984) 
and only a brief outline of them will be given here. It is worth noting, however, that 
during 1985-1987 much attention was given to the conditions of hot sunny weather 
and weak but stable wind which correspond to especially small values of L .  As a 
result the data were collected for a wide range of positive {-values up to { = z /L  
60 (i.e. 161 = z/lLol x 25). 

The measured values of the wind velocity and temperature a t  eight heights were 
averaged over 35-minute time intervals and the mean profiles U(z )  and T(z) obtained 
were then approximated by a special smoothing function containing four empirical 
coefficients determined by the least-squares method. The deviations of the measured 
values of U(z)  and T(z) from the approximating curves were always within the range 
of the measurement errors. Therefore the determination of the gradients dU/dz and 
dT/dz from the curves seemed to be justified. The gradients were computed for six 
heights (the lowest height (1 m) and the upper height (40 m) were excluded since the 
procedure described was not accurate enough there). The value of L was determined 
from the measured values of u* and Q, and the values of $U(f) and $,({) were 
computed for six heights z .  All the values of $J{) and $,({) obtained were plotted 
on graphs together with the values of &hu({) and {b#J,(LJ for a = 4 and -4, b = 5. The 
values of the exponents a and b were chosen so that the products P$J&J and $$,(c) 
were constant in the ranges of {-values where equations (3.2b) and (3.3b) are valid. 
Note that &bU(6) and [E$,(lJ do not depend on u*; hence plotting these functions 
did not produce the ‘artificial correlations’ introduced by using the dependent and 
independent variables which both include the experimental values of u* subject to 
considerable measurement errors (see Hicks 1978, 1981). The Tsimlyansk data are 
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FIGURE 1. Dimensionless velocity and temperature gradients &(() and &([) obtained from the 
Tsimlyansk data of 1981-87 (open circles) and from the data collected in Kansas in 1968, 
Minnesota, 1973, and Australia, 1976, (closed circles) ; -, equations (3.5) ; ---, (3.6). 

rather scattered (as are all the data of micrometeorological measurements), but they 
are very numerous and this reduces the influence of the scatter. In  the course of data 
processing, the y-axis was partitioned into a number of comparatively narrow 
subintervals and the mean values of the dependent variable were computed for each 
of the subintervals. The obtained mean values were found to agree quite satisfactorily 
with the assumption on the constancy of $,([) and $,([) in a range of small 5-values, 
the constancy of @$,([) and @$,([) in a range of moderate [-values and the 
constancy of [-",(c) and @$,([) in a range of large <-values. Namely, according to 
these data 

2.4 for 0 < c 5 0 . 1 ,  i 0 . 9 ~ ;  for ~2 5 

2.6 for 0 < c 5 0 . 1 ,  

1 . 7 s :  for 0.3 5 c5 3, q5,([) = 1 . 1 s ;  for 0.3 5 c5 3, (3.5) 

0.7@ for c2 5, 

(see figure 1) .  Hence the data agree satisfactorily with the assumption on the 
existence of dynamic, dynamic-convective and free convection sublayers of an 
unstable boundary layer and show that these sublayers are located approximately at 
heights x 5 0.lL = 0.04(L0(, 0.12(LoI = 0.3L 5 z 5 3L = 1.2(L0( and z 2 5L = 2(Lo(; 
moreover, A ,  x 2.6, A ,  x 2.4, B, x 1.7, B, x 1 . 1  and C, x 0.7, C, x 0.9. The 
(rather crude) estimate of C, obtained implies that L,, x 2L. Note that in the range 
0.2 5 c 5 2 the data shown in figure 1 can also be approximated quite accurately by 
equations of the form (3.4). However, such equations have no theoretical justification 
and they are clearly inadequate in the range of large values of 6. 

The estimates of A ,  and A ,  given agree well with the results of numerous 
laboratory measurements showing that A ,  x 2.5, A , / A ,  = Pt x 0.85. The values of 
B, and B,  obtained are within the scatter of the previous estimates of these 
coefficients from meteorological measurements which were collected by Monin & 
Yaglom (1971, 58).  It was, however, suggested in the book by Monin & Yaglom that 
the corresponding estimates of B,  and B, are related to a hypothetical 'free 
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FIUURE 2. Mean profiles in the laboratory unstably stratified flow from Petukhov & Polyakov 
(1988) : (a) velocity profile ; (b) temperature profile. 

convection region’ which occupies the sublayer from z x 0.1L to the upper edge of 
the ASL. Figure 1 also shows that equation (3.2b) for c $ ~ ( < )  is in fact valid with a 
good accuracy starting at c = 0.1, but (3.2b) for &([) is clearly invalid at such small 
values of g. Moreover, although the coefficients B, and C, differ only slightly, the 
values of $,(c) for 5 > 3 are clearly below the curve $, = 1.lc-i. As to the data from 
laboratory experiments, only the results by Petukhov & Polyakov (1988, $5.1), 
obtained in a plane channel with a heated lower wall are appropriate for comparison 
with the theoretical equations ( 3 . 2 ~ ) .  In  figure 2 the dependence of [U(z,)- U(z , ) ] /u ,  
and [T(z,) - T(z,)]/T! on [z ;~-$]  are shown, which should be linear with slopes 
3B, and 3BT, respectively, if equations ( 3 . 2 ~ )  are valid. The data in figure 2 are for 
the flow region which was called the ‘strong convection region’ by the authors, but, 
in fact, i t  belongs to  the dynamic-convective sublayer where equations ( 3 . 2 ~ )  must 
hold. According to figure 2, 3B, x 5.6,  3B, x 3.8, i.e. B ,  x 1.9, B, x 1.3; these 
estimates are quite close to  those in equations (3.5). 

The values of the coefficients C, and C, in ( 3 . 3 ~ )  have never been estimated. 
before. Note in this respect that  in all the previous descriptions of free convection 
(e.g. by Obukhov 1960 and Wyngaard et al. 1971) it has been assumed that the wind 
shear vanishes there and the turbulence becomes axisymmetric. Hence it has been 
implicitly supposed that C ,  = 0. It has also already been noted in $2 that Betchov 
& Yaglom (1971), Yaglom (1974), Monin & Yaglom (1975) and Wyngaard et al. 
(1971) even suggested that the free convection layer, where the influence of a* can 
be neglected, possibly cannot be attained in the atmosphere. However, according to 
the data analysed in this paper, the free convection sublayer can quite often be 
observed in the atmosphere, but the wind shear differs from zero (but  it is small) 
there and the turbulence is not axisymmetric. (This does not contradict the absence 
of substantial influence of u* on the flow in the free convection region.) Therefore the 
free convection sublayer considered in this paper is a generalization of the free 
convection regime introduced in the earlier works. 

Apparently, even the non-monotonicity of the function $,(<) has never been 
noticed before. However, when the numerous data of field experiments in Kansas in 
1968, Minnesota, 1973, and Australia, 1976, published by Izumi (1971), Izumi & 
Caughey (1976), Garratt et al. (1979) and Dyer, Garratt & Francey (1981), were 
treated similarly to the Tsimlyansk data, it was found that all these data agree 
satisfactorily with equations (3.5) (see figure 1) .  This agreement seems surprising, 
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since the data from these three experiments have been used prcviously to  
obtain rather different conclusions; see Businger et al. (1971), Francey & Garratt 
(1981), Dyer & Bradley (1982) and Hogstrom (1988). Note, however, that no figures 
in these papers include any data for [ > 8 and the majority of the figures are based 
on measurements related to an even more restricted range of positive [-values. 
Possibly the rare observations a t  larger values of [, which can be found in the 
published collections of numerical data, were considered as unreliable and were not 
taken into account in data treatments whose results were described in the four 
above-mentioned papers. It seems to  us, however, that the extensiveness of the data 
for large values of [ collected in all the experiments taken together and the fact that 
the results obtained for four very different geographical areas proved to be close to 
each other must give the data great credibility. 

The behaviour of the functions q5J5) and c $ ~ ( [ )  in the transition regions between 
the dynamic and dynamic-convective, or dynamic-convective and free convection 
sublayers cannot be found from dimensional reasoning. Therefore here one should 
apply some additional hypotheses to compute these functions or should limit oneself 
to finding purely empirical formulae for them. Such purely empirical formulae of the 
form 

were proposed by Kader & Perepelkin (1989). The curves described by (3.6) are quite 
smooth and have the correct asymptotic behaviour at both small and large values of 
5; moreover, as figure 1 shows, they agree rather well with the data for all the values 
of 6 investigated. 

4. Profiles of one-point fluctuation moments 
4.1. Second-order moments 

Let us now consider the moments of the turbulent fluctuations in unstably stratified 
boundary layers and begin with the second-order moments. There are only five non- 
vanishing second-order moments that vary with z ;  they are (u,) = B E ,  (v2) = B:, 

( w 2 )  = B;, ( t 2 )  = a: and (ut) = -Q,. It is known that within the dynamic sublayer 
all the moments take constant values which depend only on u* and Q = ( w t ) .  I n  
particular, 

f l u  = A,u*, rv = A,u,, gw = A3u*, gt = A4T*, Q, = A5Q, (4.1) 

where A , ,  , . . , A ,  are dimensionless constants. In the dynamic-convective sublayer 
the vertical velocity scale w* = (Qpz)$, horizontal velocity scale u** = u,$/w* and 
temperature scale 0, = Q / w ,  must be used; therefore 

B, = B, u** = B, u $ ( Q ~ z ) - : ,  B, = B, u: (Q~z) -+,  B, = B, = ~ , ( ~ p ~ ) f ,  } (4.2) 
ut = B, 0, = B, Q;(@z)-f, Q* = B, u** 0, = B,u$ Q ; ( ~ z ) - ;  

in this sublayer. Finally, in the free convection sublayer the parameter u* is 
unimportant and w* and 0, are the only relevant velocity and temperature scales. 
Therefore equations (1.9) must be valid in this sublayer. 

Equations (4.1) are well known and have been verified many times in laboratory 
experiments. The available laboratory data agree well with the equations and show 
that 

A ,  x 2.3, A ,  w 1.7, A ,  x 1.0, A ,  w 1.3, A ,  x 2.5 (4.3a) 
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(see e.g. Yaglom 1979 and Kader & Yaglom 1980). Many atmospheric values of all 
the second-order turbulence moments were computed at the Tsimlyansk field station 
by the time averaging (over 35-minute intervals) of the squares (or the products) of 
fluctuations measured by the fast-response instruments (sonic anemometer and 
platinum-wire thermometer). The results for neutral thermal stratification are more 
scattered than most of the laboratory data;  however, on the whole they also agree 
well with (4.1) and give the following estimates for the coefficients: 

A ,  x 2.7, A ,  x 2.5, A ,  M 1.25, A ,  z 2.9, A ,  M 3.8. (4.3 b )  

The estimates (4 .3b)  for A , ,  A ,  and A ,  are slightly larger than the corresponding 
estimates ( 4 . 3 ~ )  but the differences are not great and can be explained by the 
experimental errors. (The unexpectedly high estimate (4.3 b)  of A ,  is apparently due 
to wind-direction fluctuations which are absent in the laboratory flows.) Let us also 
note that available atmospheric estimates of A, ,  A ,  and A ,  in the literature are 
usually intermediate between ( 4 . 3 ~ )  and (4.3 b ) ;  for example, according to Kerman 
(1978) A ,  x 2.5, A ,  x 1.8, A ,  x 1.16; Yasuda (1978) found that A ,  x 2.35, A ,  x 1.9, 
A ,  z 1.0; Binkowski (1979) recommended the estimates A ,  x 2.5, A ,  x 1.9 and A ,  x 
1.25; while Bradley & Antonia (1979) came to the conclusion that A:+Ai+Ai  = 
12.5. The latter authors noted that most of the laboratory estimates of A, ,  A ,  and 
A ,  are slightly lower than the same estimates based on atmospheric data and they 
discussed possible reasons of such a discrepancy. 

The situation concerning the coefficients A ,  and A ,  is more complicated since the 
differences between their estimates ( 4 . 3 ~ )  and (4.3 b)  exceed possible experimental 
errors. These differences show that temperature fluctuations in an atmospheric 
surface layer a t  neutral (or almost neutral) thermal stratification are larger than 
those in the logarithmic region of a laboratory boundary layer. It is natural to think 
that this fact is due to the thermal inhomogeneities that always exist on the ground 
while in laboratory flows with heat transfer the wall is usually thermally 
homogeneous. Note in this respect that in the laboratory boundary layers without 
heat transfer (i.e. when the wall and fluid have the same temperature), there are no 
temperature fluctuations a t  all, while in an atmospheric surface layer such 
fluctuations exist even if the mean heat flux Q is equal to zero (Yasuda 1978). 

Until now there have been no reliable data on the values of (u'} and (v2> in the 
dynamic-convective and free convection sublayers of an unstable ASL. The heights 
z for these sublayers are greater than for the dynamic sublayer and the increase of 
z leads to a shift of energy ranges (i.e. ranges which give the main contribution to the 
mean square values) in the spectra of horizontal wind components towards the low- 
frequency end of the frequency axis. A similar spectral shift is produced by the 
instability intensification (i.e. decrease of L ) .  Therefore, when the wind fluctuations 
are measured in the ASL above the dynamic sublayer, the band-pass frequency of the 
instrument used (i.e. the band of frequencies of the oscillations that are not distorted 
by the instrument) proves to be usually insufficient for obtaining accurate values of 
(u2)  and (v2). Note in this connection that the atmospheric data on (u2)  and (v2) 
analysed by Panofsky et al. (1977) demonstrate the dependence of these moments on 
the thickness zi of the planetary boundary layer and zi is always much greater than 
the thickness of the ASL. (In summer a t  midday xi is usually of the order of 1000 m.) 
The conclusions drawn by Panofsky et al. do not seem to be very reliable when 
applied to the ASL; they are based mostly on measurements at relatively large 
heights (of the order of several tens or even hundreds of metres) and their validity 
for smaller heights of the order of a few metres needs additional verification. 
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However, if the values of (u2) and (v2) in the ASL really depend on zi, then this 
means that the spectra of the corresponding fluctuations are extended to the range 
of very small frequencies where the Monin-Obukhov similarity theory is inapplicable. 
It seems to us that till now there have been no reliable measurements of (u2 )  and 
(v2) above the dynamic sublayer of the ASL; therefore no experimental data on (u2)  
and (v2) are considered in this paper. 

It has been noted above that it was known as early as the 1960s that the 
relationships uw cc d and ut cc 2-4 agree with the available data over a wide range of 
heights z exceeding 0.1L. I n  subsequent years the measurements of (w2) and ( t z )  in 
the ASL were repeated by many experimenters who came to the same conclusion ; see 
e.g. Wyngaard et al. (1971), Monji (1973), Businger (1973) and Panofsky et al. (1977). 
However, the theory presented in this paper casts doubt on the available estimates 
of the dimensionless proportionality coefficients in these relationships since most of 
these estimates are based on data for the height range that includes not only the 
dynamic-convective sublayer but also a part of (or all) the transitional region and 
sometimes also a part of the free convection sublayer. (Let us remind readers in this 
respect that equations for profiles of uw and ut in the dynamic-convective and free 
convection sublayers have the same form, but the numerical coefficients in these 
equations may have different values. If these values for two ranges differ only 
slightly then it is possible, of course, to approximate the whole profile by one 
equation with an intermediate value of the coefficient.) Finally, the applicability of 
equation (4.2) for the profile of Q, to a range of e-values larger than a few tenths of 
L was demonstrated by Zilitinkevich (1971) who used the earliest measurements of 
the moment Q,. 

More complete results, which included numerous values of the second-order 
moments over a wide range of [-values, were obtained a t  the Tsimlyansk station 
during 1981-1987. The Tsimlyansk data are shown in figure 3;  they agree quite 
satisfactorily with equations (4.1), (4.2) and (1.9) for uw, crt and Q, and give the 
following estimates of the numerical coefficients in (4.2) and (1.9) : 

B, z 1.65, B, x 1.4, B, x 1.2; C, x 1.3, C, x 1.5. (4.4) 

A similar graph is plotted in figure 4 for the data from a number of other papers 
(Wyngaard et al. 1971 ; Mordukhovich & Tsvang 1966; Zubkovskii & Tsvang 1966; 
Haugen, Kaimal & Bradley 1971; Arya 1972; Hayashi 1974; Monji 1973, 1975; 
Donelan & Miyake 1973; Wesely 1974; Volkov, Koprov & Kravchenko 1975; 
Rayment & Caughey 1977 ; Bradley, Antonia & Chambers 1981 a ,  b ,  1982 ; Schacher 
et al. 1981 ; Kai 1982). The data from these sources cover an even wider range of <- 
values extending up to [x 100; they are rather scattered but do not contradict 
equations (4.1), (4.2) and (1.9), and lead to almost the same estimates of the 
dimensionless coefficients as the Tsimlyansk data. It is worth noting in this respect 
that the most usual previous estimates of the coefficients D, and D, in the relations 
uw/u* = D31[oli, u,/T, = D41[01-i, where 1[,1 x ~ [ x  0.4[, are : D, z 2.0, D, x 0.9 (see 
for example Wyngaard et al. 1971 ; Monji 1973; Businger 1973; Panofsky et al. 1977; 
Tennekes 1984). Replacing 161 by 0.45 we obtain the corrected coefficients U; = 1.5, 
D: = 1.25 which, according to the above-mentioned authors, relate to a fictional free 
convection region which is, in fact, a combination of the dynamic-convective 
sublayer, the transitional region and the free convection sublayer. We see that the 
estimate of Dh is intermediate between those of B, and C,, while the estimate of Di 
is quite close to  that of B,. 
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FIGURE 3. Profiles of normalized second-order moments in the unstable surface layer according 
to the Tsimlyansk data of 1981-87. 
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FIGURE 4. The same profiles as in figure 3 according to data from the literature. 0, Mordukhovich 
& Tsvang (1966); V, Zubkovskii & Tsvang (1966); 0, Wyngaard et al. (1971); 'I, Haugen et al. 
(1971); +, Arya (1972); D, Hayashi (1974); 0 ,  Monji (1973, 1975); 4, Donelan & Miyake (1973); 
4, Wesely (1974); +, Volkov et al. (1975); A, Rayment & Caughey (1977); ., Bradley et al. 
(1981a, b, 1982); 0, Schacher et aE. (1981); b, Kai (1982). 
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4.2. Third-order moments 

Results similar to  (4.1)) (4.2) and (1.9) can also be given for third-order moments of 
turbulent fluctuations. We shall consider here only the moments (w2t ) ,  (wt'),  (uwt) ,  
(uw') ,  (ut') and ( t 3 )  since only these third-order moments were computed from the 
Tsimlyansk data. (The third-order moments which include u2 or v 2  were not 
considered since the results of their estimation seemed to  be unreliable. The values 
of (w3) were not computed, by mistake; a survey of available experimental estimates 
of the values of ( w 3 )  in the ASL was published by Chiba (1978) and it shows that 
these estimates are very scattered but on the whole they do not contradict the theory 
presented in this paper.) In  the dynamic sublayer the third-order moments measured 
in Tsimlyansk must be independent of z and have the form 

1 (4.5) (w't) = A, U: T* = A, U* Q, (w t2 )  = A ,  Q2/u,, (uwt )  = - A ,  U* Q ,  

( u w ~ )  = -A,u~,,  ( U P )  = -A,,,Q/u*, ( t 3 )  = A, ,  Q3/u;, J 
where A, ,  . . . , A, ,  are some constants. Similarly, within the dynamic-convective 
sublayer the following equations must be valid: 

(w't) = B, Q @ z ) ~ ,  

(uw') = -BSu2,(Qpz)i, 

(wt') = B, Q:(pz)-$) (uwt)  = -B, U: Q;((Pz)-i, 1 (4.6) 
(ut2) = -B,,u~, Q(Dz)-l, ( t 3 )  = B,, Q'((Pz)-'.J 

Finally, within the free convection sublayer 

(w't) = C, Q s ( p ~ ) $ ,  (wt') = C, Qi(Pz)-:, (uwt )  = - C, Qi(pz)i ,  1 
(4.7) 

It is known that the third-order moments of unordered fluctuations are always 
considerably less accurately determined from a given fluctuation record than the 
second-order ones (i.e. much longer records arc needed to  achieve the same accuracy 
for the third moments). Therefore it is not surprising that all the experimental data 
related to the third moments of turbulent fluctuations are very scattered. Figure 5 
shows, however, that  none of the available results (both calculated from the 
Tsimlyansk measurements and borrowed from the available literary sources) 
contradict the theoretical equations (4.5)-(4.7), and the data allow one to give the 
following (rather rough) estimates of some coefficients in these equations : 

(Uwz) = - C, ~ p z ,  (ut2) = -c,, &$(pz)-+, ( t3)  = c,, Q ~ ( ~ ~ ) - I . J  

B, x 1.0, B, x 1.1, B, x 1.0, B, ~ 0 . 8 ,  B,, % 1.0, B,, x 2; (4.8) 

A, x 0.55, A ,  x 1.2, A,,  x 4.5, A,, x 10; 

C, x 1.6, C ,  x 0.45, C, z 0.35, C,, x 0.75. 1 
Of course, these estimates must be considered as preliminary guesses to  be revised on 
the basis of subsequent special measurements. 

The results of the early atmospheric measurements of the moment (uwt)  were 
published by Wyngaard et al. (1971) who noted that the data for unstable 
stratification disagree strongly with the simplest free convection prediction (4.7) for 
this moment. It was stressed by Betchov & Yaglom (1971) that the data by 
Wyngaard et al. at 5 > 0.5 agree satisfactorily with (4.6) for the moment (uwt) .  Later 
Zilitinkevich (1973) used the same data to obtain the first estimate, B, x 0.7, of the 
coefficient B,. The moment (w't) was also measured by Wyngaard et al. (1971). 
These authors concluded that the data obtained agreed well with the free convection 
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FIQURE 5. Profiles of normalized third-order moments in the unstable surface layer. 0, from 
the data collecbed in Tsimlyansk; other symbols have the same meaning as in figure 4. 

5 

prediction (4.6) and (4.7) (for (w2t )  both these equations have the same form) and 
gave a rough estimate of the corresponding dimensionless coefficient which implies 
that  B, z 0.96. All the other coefficients in (4.5)-(4.7) have apparently never been 
estimated before. 

4.3. Budget equations and dissipation rates 
The third-order moments enter the dynamic equations for the second moments. 
These equations H e  often called the budget (or balance) equations for the 
corresponding moments; see e.g. Wyngaard & Cot6 (1971), Wyngaard et al. (1971), 
Bradley et al. (1981, 1982). Thus, the kinetic energy budget in the constant-flux 
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region of a steady two-dimensional boundary layer is the sum of the three equations 
( 2 . 2 )  ; when molecular transfer is neglected, it has the form 

1 d((u2 +v2 + w2) w) 1 d(pw) 
8 ,  = dU 

dx 2 dz P dz 
U: - + PQ - - (4.9) 

where E is the rate of energy dissipation. This equation includes the third moments 
(wu2), (wv2) and (w3) which determine (together with the moment (pw)) the rate 
of the vertical transfer of kinetic energy. Under the same conditions the budget of 
temperature fluctuation variance ( t 2 )  has the form 

dT d(wt2) -2Q-------- - - m, 
dz dz 

(4.10) 

where N = DX:-, ((dt/axJ2) is the dissipation rate for act2) .  
The definitions of the dissipation rates E and N include the molecular transfer 

coefficients v and D. However, none of the other terms in (4.9) and (4.10) depends 
on these coefficients and their vertical profiles satisfy the Monin-Obukhov similarity 
theory ; therefore this theory can also be applied to E and N .  (Note in this respect that 
according to the theory of locally isotropic turbulence, E and N are equal to the rates 
of spectral transfer for the energy, !j( (u2) + (v2) + (w2)), and temperature fluctuation 
intensity, & ( t 2 ) ;  see e.g. Monin & Yaglom (1975, Chap. 8). The rates of spectral 
transfer are clearly independent of v and D ;  this explains the applicability of the 
Monin-Obukhov theory to E and N . )  According to the similarity theory 

(4.11) 

where q5€([) and q5,([) are two universal functions of 6. 
In the dynamic sublayer the rate of the convective energy production PQ is much 

smaller than the rate of the dynamic production ut dU/dz; hence the term PQ can be 
neglected in (4.9). Moreover, none of the one-point moments depends on z in this 
sublayer ; therefore the derivatives of these moments with respect to z are equal here 
to zero. As a result (4.9) and (4.10) imply that E = u: dU/dz, N = -QdT/dz in the 
dynamic sublayer and, according to (1.3) and (1.4), 

q5,(6) = A ,  x 2.5, $([) = A ,  x 2.1 for 5 4 1 .  (4.12) 

In  the free convection sublayer both E and N must be independent of u*. Therefore 
(4.1 1) implies that  

A(6) = c, 6, $N(Y)  = c, 6-i (4.13) 

in this layer, where C, and C, are two constants. By virtue of (4.10), ( 3 . 3 ~ )  and (4.7) 
we obtain 

c, = CT+$C,. (4.14) 

If z belongs to the dynamic-convective sublayer, then both the terms on the left- 
hand side of (4.10) are independent of u*. Hence N is also independent of U* in the 
dynamic-convective sublayer and this implies that 

= B, C-i. (4.15) 

According to (4.10), ( 3 . 2 ~ )  and (4.6) we obtain 

B, = BT+$B,. (4.16) 
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The situation for the profile of E in the dynamic-convective sublayer is more 
com licated. I n  fact, some of the terms on the left-hand side of (4.9) are proportional 
to 2-5 in this sublayer, and the others are independent of z. (It is natural to think that 

P 
the term containing <pw) is also the sum o f a  constant and a term proportional to  
z-") Therefore #,(a = B!"[+By'c-i (4.17) 

in the dynamic-convective sublayer (BL1) and Bt2' are unknown constant coefficients). 
The dissipation rates E and N can be determined from spectral measurements. 

According to well-known results by Kolmogorov, Obukhov and Corrsin the following 
equations are valid in the inertial subrange of the wavenumbers k: 

E,(k)  = 0.75E,(k) = 0.75Em(k) = K ,  ~:k-g,\ 

E, ( k )  = K ,  N e - k i ,  J (4.18) 

where E,, E,, E,, E ,  are longitudinal (in the mean velocity direction) one- 
dimensional spectra of u-, v-, w- and t-fluctuations, and K,  and K,  are constant. The 
available experimental data show that apparently K ,  x 0.5 and K ,  x 0.7 but the 
scatter of the experimental values for these coefficients (especially for K,) is rather 
large; see for example Monin & Yaglom (1975, Chap. 8), and Yaglom (1981). The 
time spectra of turbulent fluctuations can easily be obtained from the records of the 
fluctuations with the aid of the modern methods of digital spectral analysis. When 
the time spectra are found, the longitudinal spatial spectra can be determined with 
the aid of Taylor's frozen-turbulence hypothesis. The inertial range of the measured 
spectra can be determined then as the range of wavenumbers k where these spectra 
are proportional to k-i and, if K,  and K ,  are known, the inertial ranges of velocity 
and temperature fluctuations can be used to evaluate E and N .  

With the aid of this method numerous values of E and N were determined from the 
Tsimlyansk data. A sonic anemometer and fast-response thermometer were placed 
close to  each other during the measurements and values of E were calculated as the 
arithmetic means of the values determined from the records of all the wind 
components given by the anemometer ; K ,  was taken to be equal to 0.5 and K ,  to 0.7 
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FIGURE 7. The same profiles as in figure 6 from the data of various authors. The symbols have 
the same meaning as in figure 4. 

in these determinations. The data permit both the functions $,([) and $,([) to be 
plotted (figure 6).  We see that the experimental data agree satisfactorily with the 
theoretical equations (4.12), (4.13) and (4.15) and lead to the following estimates of 
the coefficients C,, C, and B,: 

C, x 1.2, C, z 0.65, B, x 0.85. (4.19) 

Figure 7 shows the functions $,(c) and $,(c) determined from values of E and N in 
an unstable ASL found in the literature. These data are rather scattered but on the 
whole they also do not contradict (4.12), (4.13) and (4.15) with the coefficients (4.19). 
We should emphasize, however, that  the experimental estimates (4.19) for C, and B, 
do not agree well with (4.14) and (4.16), which by virtue of (3.5) and (4.8) imply that 

C, x 1.15, B,  z 1.3. (4.20) 

The discrepancy between (4.19) and (4.20) characterizes the degree of accuracy of 
the data and equations used in the derivation of these estimates. It is clear that the 
experimental values of the coefficients B, and C, related to the third-order moments 
are rather crude but the errors in these coefficients alone cannot explain all the 
discrepancy. One further reason may be the inaccuracy of the budget equation 
(4.10) due to the horizontal inhomogeneity of the Tsimlyansk experiment site (this 
inhomogeneity apparently also affected the early data of Mordukhovich & Tsvang 
1966). Moreover, the scatter in the experimental values of the coefficient K ,  shows 
that the determination of the temperature dissipation N from the inertial range of the 
temperature spectra can also lead to some errors. It is clear that  special, more 
complete, measurements are needed to  verify all the equations used in the present 
paper and to ascertain the true reasons for the discrepancies discovered. 
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